Pcop. If a subsequence of a Cancly seguene conveges to $x \in X$, then the whole sequence onverzesto x.
poof. Lut $\left(x_{n}\right) \leq X$ be a Cancly segaence al ($x_{\text {be }}$) a sabsegance that converges to sose $x \in X$.

$$
\begin{aligned}
d\left(x_{k}, x\right) & \stackrel{\Delta}{\leqslant} d\left(x_{k}, x_{n_{k}}\right)+d\left(x_{n_{k}, x}\right) \\
& \left.\leq \operatorname{liam}\left\{x_{k}, x_{k+1}, \ldots, x_{n_{k}}\right) \ldots\right\}+d\left(x_{n_{k}, x}\right) \\
& \rightarrow 0+0 \quad \text { a) } k \rightarrow \infty .
\end{aligned}
$$

Coupletemetric spaces. A retric space (x, d) is called cooplete if ereery lanchy segaence $\left(X_{n}\right) \subseteq X$ has a limit $x \in X$.

Easy exyles. - Discrete wetric spaces, i.e. chere $d(x, y) \geqslant 1$ for all $x \notin y$. These are woyplete rince erery Cancly segnesue is eventually cosrtast.
$0 \quad[0,1)$ with the usual netric is not compete bease $\left(1-\frac{1}{n}\right)$ is can ly (bene if ronverges within $[0,1]$) bat doesn't ronvege in $(0,1)$.

- Q with the assal metric is not couplete bense $\exists\left(q_{n}\right) \subseteq \mathbb{Q}$ converging to $\sqrt{2}$ is \mathbb{R}, so (y_{a}) is Cancly bat doesn't converge winnin Q
Fact. $\sqrt{2} \notin \mathbb{Q}$, noce foccually, the polynomial $x^{2}-2=0$ doesn't have a root is \mathbb{Q} (here \mathbb{Q} is not algebraicalty losed.
Prot. let $\frac{n}{m}=\int_{2}$ be the robluced form, then $a^{2}=2 \mathrm{~m}^{2}$, so u is even, i.e. $u=2 \tilde{n}$, hene $2 m^{2}=4 \tilde{u}^{2}$, so $m^{2}=2 \tilde{u}^{2}$, so m is even, so $m=2 m^{2}$, $5 \frac{5}{m}$ wasn't rechaced.

The filloving illustiates how one may we copleteren of a largee space to wadacle sonething in the sualler space.

Prope In the netric yace ©l wh the usual wetric, bounded monotove segnenes are Cancly,

Pcoof 1 (using $\mathbb{R})$. We look at this sessence in \mathbb{R}. Nhen ly the Mocotone Cosverience Theorem, this segacesce corverges in (R) al honce is cauch.
Droof 2 (without $\mid R)$, Lut $\left(x_{n}\right) \subseteq Q$ be, say, inceasing, increasing and suppose it is not Canch. Well show int it's not bounded.
Not Candy inplies hat $\exists \varepsilon>0$ sit. $\forall n, \operatorname{diam}\left(4 x_{n}, x_{n+1}, \ldots\right)>\varepsilon$
(this is becose $\left.\operatorname{dian}\left(x_{n}, x_{n+1}, \ldots\right\}\right)$ is
a decceasing regnence). Then $7 x_{n_{1}}$
s.t. $d\left(x_{0}, x_{n_{1}}\right)>\varepsilon . \exists x_{n_{2}}$ s.t. $d\left(x_{n_{1}}, x_{n_{2}}\right)$
$>\varepsilon, \ldots$ ths, $d\left(x_{0}, x_{n_{k}}\right) \geqslant k \cdot \varepsilon$ so $\left(x_{n}\right)$ is nabld.

Characterization of cogpletecen (in herous of no-ergts astersectiad. For a netric space (x, d), TFAE:
(1) (x, d) is woplete.
(2) Every secressingeen (Cu) of of closed sets of vanishing Stiameter, i.e. $\operatorname{dian}\left(C_{a}\right) \rightarrow 0$, has a nonengly intasection, i.e. MC. $\mathrm{M}_{n} \phi$.
(3) Eung decreasing segrene $\left(B_{a}\right)_{u \in N}$ of closed balls of vanishing dianeder has a nonenpty canterrection.
Proot. (2) $\Rightarrow(3)$. Trivial.
(1) \Rightarrow (2). Given a decreasing sey. (Ca) of closed sete with $\operatorname{diam}\left(C_{n}\right) \rightarrow 0$.
Let $x_{n} \in C_{n}$ (this uses Avion of Choice). Ran $\left\{x_{n}, x_{n+1}, \ldots\right\} \subseteq C_{n}$, so $\operatorname{dian}\left(\left\{x_{4}, x_{n+1},\right\}\right.$ $\leq \operatorname{lian}(C a) \rightarrow 0$ as $u \rightarrow \infty$, 10
$\left|x_{n}\right|$ is Candy, hence has a linit $x \in X$.
Sive $\left\{x_{n}, x_{n+1}, \cdots\right\} \leq C_{n}$ ald C_{n} is losed, if has to wondain the livit x. Thas, eabl C_{n} contain x, so $x \in M_{n} C_{\text {a }}$
$(2) \Rightarrow(1)$. Let $\left(x_{2}\right)$ be a Cancly segsence.
Let $\left.C_{n}:=4 x_{n}, x_{1+1}, \ldots\right\}$, so C_{n} is closed al $\operatorname{dim}\left(C_{a}\right)=\operatorname{dian}\left\{x_{n}, x_{n+1}, \ldots\right\} \rightarrow 0$ as $u \rightarrow \infty$. Thes, $\exists x \in \bigcap_{n} C_{n} . d\left(x_{n}, x\right) \leq \operatorname{dican}\left(C_{n}\right) \rightarrow 0$.
$(3) \Rightarrow$ (1). Led (x_{a}) be a Canch sugcence. It's enough to shom that it has a consegeat sibsegsence. Acceleration trick: choose a subsegcence ($x_{n_{c}}$) s.t. $\operatorname{diam}\left(x_{n_{p}}, x_{n_{k+1}}, x_{n_{k+2}}, \ldots\right) \leq 2^{-k}$. (Build
this cuursively.) Without loss af yenerilit, we way thus assume that the original $\left(x_{n}\right)$ had this property: $\quad \operatorname{ciam}\left(\left\{x_{n}, x_{n+1}, \ldots,\right\}\right) \leq 2^{-4}$.
let $B_{n}:=\bar{B}_{2 \cdot 2 \cdot 2}\left(x_{n}\right)$. Then $B_{n+1} \leq B_{n}$ becase if $x \in B_{n+1}$, then $d\left(x, x_{n+1}\right) \leqslant 2-2^{-(n+1)} \quad \perp$ $d\left(x_{n}, x_{n+1}\right) \leq 2^{-n}$, so by the D-ine 7 .

$$
l\left(x, x_{n}\right) \leq 2 \cdot 2^{-(n+1)}+2^{-4}=2-2^{-n} \text {, so } x \in B_{n} .
$$

Counterexamples for diam $\rightarrow 0$.
o let $x:=1 N$ with the cliscecte metric.
Then all sub are closed, al vex tate $C_{n}:=\{n, n+1, n+2, \ldots\} . \operatorname{diam}\left(C_{n}\right)=1 \nrightarrow 0$, and $\bigcap_{n} C_{n}=\varnothing$.

- Again let $x:=\mathbb{N}$ with the following uretic $d(n, m):=1+2^{-\min (n, m)}$ for $n \neq m$, $d \quad d(n, n)=0$.
Men $B_{n}=\bar{B}_{H+2-n}(n)=\{n, n+1, n+2, \ldots\} d$ dian $\left(B_{n}\right)=$ $1+2^{-n} \rightarrow 0$ al $\quad n B_{n}=\varnothing$.
Roth of these wetrir space coif have nontrivial cauchy sasene, hence are worlete.

